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Abstract. We study numerically the probability distribution of the Yang–Lee zeroes inside the
Griffiths phase for the two-dimensional site diluted Ising model and we check that the shape of
this distribution is that predicted in previous analytical works. By studying the finite-size scaling
of the averaged smallest zero at the phase transition we extract, for two values of the dilution,
the anomalous dimension,η, which agrees very well with the previous estimated values.

1. Introduction

The Yang–Lee theorem provides a theoretical, and powerful, tool to study phase transitions.
In systems without disorder (e.g. the usualφ4 theories or Ising models,XY model, etc) this
theorem allows one to characterize and to estimate numerically the phase transition and the
anomalous dimension [1, 2].

In the disordered case (i.e. systems with a random interactions) the theorem provides a
tool to study (and to define) the Griffiths phase (or in other words the Griffiths singularities)
[3]. The Griffiths phase is a peculiar phenomenon of disordered systems. Roughly, it
is a region above the critical temperature of the disordered system and below that of the
pure system (for some choices of the disorder distribution this temperature could be infinite
[4]). Below the critical temperature of the pure system, which we denoteTc(p = 1), but
above the critical temperature of the disordered one, which we denoteTc(p), there exist
magnetized domains (geometrical clusters, since of course, the total magnetization is zero,
as we are still in the paramagnetic phase of the diluted system). These domains of non-
zero magnetization induce a complex singularity (Yang–Lee zeroes) in the free energy as a
function of the magnetic field (Griffiths singularity [3]).

In classical statistical mechanics the Griffiths singularities are essential singularities and
so have no effect on the static properties of the system (nothing diverges in the Griffiths
phase, except at the critical point‡).

But dynamically this phase induces a slow behaviour in the spin–spin autocorrelation
functions [6], the dynamic of the system becomes slower than in the ‘usual’ paramagnetic
phase [4].

For instance, in the three-dimensional spin glass case, numerically there is a change in
the autocorrelations functions from those of the paramagnetic case (C(t) ∼ t−x exp(−at)) to

† E-mail address: ruiz@chimera.roma1.infn.it
‡ In the quantum case the singularities are stronger [5].
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short range correlations (like a behaviour†: C(t) ∼ t−x exp(−atβ), β 6= 1) just at the critical
point of thepure Ising model. Obviously at the critical point of the three-dimensional spin
glass there exists another change in the behaviour of the autocorrelation function to a spin
glass regime [6].

In this paper we will focus our attention on the probability distribution of the smallest
zero in the Griffiths phase and we will confront our numerical results with the analytical
prediction of [4]. We have obtained a clear numerical picture about the construction of the
Griffiths singularities.

We will also extract, using the scaling of the average of the smallest zeroes at the critical
point, the anomalous dimension of the system and we will compare this value with previous
numerical simulations of the system [8].

We remark that all the simulations reported in this paper are at equilibrium.

2. Yang–Lee singularities

By regarding the partition function of the pure Ising model in a finite volumeLd as a
function of the variables

ρ = e−2h τ = e−2β

whereh is the magnetic field andβ is the inverse of the temperature, Yang and Lee [9, 10]
found that the complex zeroes of the partition function in theρ variable lie in the unit circle
and there are no zeroes on the real axis. Moreover in the thermodynamical limit, and for
β > βc, the pointρ = 1 becomes an accumulation point giving rise to a singularity in the
free energy.

Near the critical point, in the paramagnetic phase, the imaginary part of the zero nearest
to the real axis,hs , behaves

hs ∼ (βc − β)1 (1)

and then, in the standard way, we can write down the finite-size dependence ofhs at the
critical point

hs ∼ L−(1/ν). (2)

Using the scaling relation1 = νd − β, whered is the dimension, we can rewrite the last
equation as

hs ∼ L−(d+2−η)/2. (3)

Below the phase transition, in the ferromagnetic phase, the scaling law is

hs ∼ L−d . (4)

In the disordered case, each sample will have a smallesth, that we hereafter denote as
hε . We will investigate numerically the functional form of the probability distribution of
hε , that we will write asp(hε).

There are some analytical results about the density of the zeroes in the Griffiths phase.
The authors of [4] obtain for the density of zeroes, with imaginary parthi , of a diluted Ising
system with a proportion of spinsp the following law

ρ(hi) ∝ exp

(
A log(p)

hi

)
(5)

ashi � 1, which is a very weak dependence.

† It is possible to demonstrate rigorously that for Ising like models (diluted, spin glasses, etc) the behaviour must
be: C(t) ∼ exp(−a(log t)d/(d−1)). I thank F Cesi for pointing this fact to me [7].



Griffiths singularities in the two-dimensional diluted Ising model 487

It has been assumed that a cluster of sizeL introduces a zero, which induces the previous
law, that scales as (see equation (4))

hi = A

Ld
(6)

whereA is the inverse of the site magnetization of the cluster [4].
It is possible to obtain a better estimate of the prefactor of 1/hi in the exponential of

the formula (5) using a variational method [4].
The important point is that there is a finite probability to have a zero in any

neighbourhood ofh = 0.
To complete this discussion we will add that at the critical point the density arrives with

a non-zero slope to the origin, in the broken phase the density at the origin is finite, and
above of the critical temperature of the pure system the density is zero in a neighbourhood
of the origin [4].

3. The model and the numerical method

The simplest disordered system is the diluted Ising model. This model describes, for
instance, the Anderson localization [11], and has been studied analytically (using the
mapping to an O(N) theory with cubic anisotropy in the limitN → 0) [11, 12] and
numerically [13, 17, 14, 8].

The Hamiltonian of the two-dimensional site diluted Ising model in a hypercubic lattice
of sizeL with periodic boundary conditions is

Hε = −
∑
〈ij〉

εiεjσiσj (7)

where 〈ij〉 denotes nearest neighbours pairs,σi are the usual spin variables andεi are
independent quenched noises which are 1 with probabilityp and 0 with probability 1− p.
Obviously the system will have a phase transition only ifp > pc where pc is the
percolation threshold for thed-dimensional site percolation. For instance, in two dimensions
pc = 0.592 746 [15].

There are analytical results for this model mainly by Dotsenko and Dotsenko, and
Shalaev [16] (DDS) using Renormalization Group techniques. There is a change in the
functional form of the specific heat (from log|t | to log[1+a log |t |], where|t | is the reduced
critical temperature anda is a constant), but there is no change in theν exponent. This
result must hold for a lower dilution of spins. For this weak disorder there are numerical
results that support this picture [17].

The authors of [8] claim that the specific heat follows the prediction of (DDS) but only
for a lower degree of dilution, moreover they found a dependence of theν andγ exponents
with the dilution such that theη exponent is constant (we remark thatγ /ν = 2 − η).

The end-point of the critical line (in the plane(β, p)), (β = ∞, pc)†, has critical
exponentsν = 4

3 andγ = 43
18 which impliesη = 5

24 ≈ 0.2083 [15].
The partition function for a purely imaginary magnetic field, ih, in a d-dimensional

lattice of sizeL is

Z(β, h) =
∑
[σ ]

exp

(
β

∑
〈ij〉

σiσj + ih
∑

i

σi

)
. (8)

† This is the two-dimensional site percolation phase transition.
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By definingM = ∑
i σi , the total magnetization of the system, we obtain

Z(β, h) = (〈cos(hM)〉 + i〈sin(hM)〉)Z(β, h = 0) (9)

where the average〈(· · ·)〉 is taken withZ(β, h = 0), i.e. a real measure. In the paramagnetic
phase all the odd moments of the magnetization vanish, which implies〈sin(hM)〉 = 0
and the only singularities of the free energy (logZ(β, h)) will arise from the zeroes of
〈cos(hM)〉.

This is the scenario for the pure systems. In the diluted case we need to replaceσi by
εiσi and so each samples will have its own smallest zero (hε). The averaged values over
all the samples,hε , should follow the previous finite–size scaling relation (3) at criticality.

4. Probability distribution of the Yang–Lee zeroes in the Griffiths phase

To check the analytical form of the probability distribution,p(hε), of the smallest Yang–
Lee zeroes† we have done numerical simulations withβ = 0.52 andp = 0.889 which is
inside of the Griffiths phase‡. We used the Wolff algorithm [19] and we simulated the sizes
L = 4 (8000 samples),L = 8 (15 000 samples),L = 12 (2200 samples) andL = 16 (3926
samples).

For each sample we have calculated its smallest zero (i.e. the smallest zero of the
function 〈cos(hM)〉, that we denote ashε). By adding all the smallest zeroes obtained
simulating all the samples we construct the histogram (i.e. each sample gives a zero, and
we perform statistic over the whole set of zeroes, for example, forL = 8 we have calculated
the histogram,p(hε), using 15 000 zeroes). Obviously, we will need a lot of samples in
order to have good statistics on the histogram (in particular in the tails of the probability
distribution), so, we have run small lattices to be able to yield a large number of samples.
The results are shown in figure 1.

We expect that the minimum value ofhε , at fixedL, should be due to the sample with
all the points filled (i.e. a pure Ising model of sizeL). We find that the minimum smallest
zero, as a function of the lattice size, follow the rule

hmin
ε = 1.5(1)

L1.93(4)
(10)

where we have fitted using 46 L 6 12 with χ2/DF = 0.2/1 (DF means degrees of
freedom).

For L > 16 lattices the previous fit (10) does not hold. This discrepancy comes from
the fact that the number of samples that we need to pick up this minimum value is larger
than the number that we have simulated.

Simulating directly the pure Ising model we find that the smallest zero (simulating up to
L = 32), as a function of the sizes, atβ = 0.52 (ordered phase of the pure model) behaves

hmin
pure = 1.55(4)

L1.97(1)
(11)

following very well the law (4). The agreement with equation (10) is also very good.
We have also fitted the mean value of the probability distribution as a function ofL

(for L = 8, 12, 16, 64, 128, 192) in the diluted case and we have found that the numerical
data behave

hε = 0.0041(1) + 1.67(2)L−1.84(1)

with a very goodχ2/DF = 4.9/4. The samples used forL > 64 are written in table 1.
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Figure 1. Probability distribution of the smallest zeroes for (right to left)L = 8, L = 12 and
L = 16.

Table 1. Number of samples simulated for different sizes and dilutions used in the numerical
simulations of sections 4 and 5.

L p = 0.889 p = 0.75

64 100 100
128 40 40
196 30 40
256 30 40

We plot in figure 2 the head (i.e. the region of lower values ofh) of the probability
distribution for theL = 8 lattice in the variables(1/hε, logp(hε)) in order to check the
formula (5).

We see two different regions that we mark with two linear fits. The first region (left part
of the figure) has a slope (−0.11(3))† which agrees, is a two standard deviation, with the
naive theoretical prediction ((logp)A = (1.5(1)× log 8

9) = −0.18(1)), where we have used
for A the numerator of the fit (10). The second region decays with a behaviour compatible
with the equation (5) but the slope is wrong (slope=−0.94(4))‡. We think that this decay
is due to a finite–size effect (the lattice size is 8) and hides the decay with the ‘naive’ slope
(≈ −0.18).

Bray [4] shows that the real slope (in absolute value) has as upper bound the ‘naive
value’ (0.18). Our numerical results go in this direction. In particular asT → Tc(p)+ the
real slope, in absolute value, goes to zero however the ‘naive’ value will clearly be different

† Obviously inρ(h) are all the possible zeroes, but as we are interested in theh � 1 regime thenp(h) ≈ ρ(h).
‡ We remark that for this dilution the phase transition is atβ = 0.5380(3) and the phase transition of the pure
model is atβ = 1

2 log(1 + √
2) = 0.440 69.

† Result of a least square fit using the points second to fourth in figure 2 (seen left to right).
‡ Using the points sixth to ninth in figure 2 (seen left to right).
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Figure 2. Head of the logarithm of the probability distribution (modulo a normalization factor)
of the smallest zeroes forL = 8 as a function of 1/hε .

from zero.
Hence, the numerical picture is as follows (we remark that we are in the Griffiths

phase): we have a narrow probability distribution with its mean value having a non-zero
thermodynamic limit. But the minimum value of this probability distribution follows the
law of the pure Ising model in the ferromagnetic phase so that goes to zero and introduces a
singularity in the free energy. We have seen this behaviour when simulating a large number
of samples up toL = 12. Using a very large number of samples could be possible to
continue this result to large lattices (L > 16).

We will see in the next section how, at the critical point, the mean value of the smallest
zeroes goes to zero following a power law.

5. Scaling of the Yang–Lee zeroes atTc

At Tc we have performed numerical simulations using the Wolff algorithm with two degrees
of dilution, p = 0.889 andp = 0.75, and lattice sizesL = 64, 128, 192 and 256. We report
in table 1 the number of samples used.

We have used the values of the inverse critical temperatures (βc(p)) reported in [8]†.
We will also compare the results of this reference with our result for theη exponent.

We have measured the susceptibility,

χ = 1

V
〈M2〉

where(· · ·) is the average on the disorder and〈(· · ·)〉 is the thermal average. We have also
measured〈cos(hM)〉 in every sample to calculate the zeroes.

We obtainhε , the smallest zero for each sample, and then we calcule the mean value,
hε . The error is estimated using sample to sample fluctuations. We plot the finite-size

† i.e. βc(p = 0.889) = 0.5380(3) andβc(p = 0.75) = 0.772(1).
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Figure 3. Mean value of the smallest Yang–Lee zeroes,〈hε〉 ≡ hε , against the size, in a double
logarithmic scale for a dilutionp = 0.889. The straight line is the power law fit reported in
table 2 and text. This fit has aχ2/DF = 0.11.

Figure 4. Mean value of the smallest Yang–Lee zeroes against the size in a double logarithmic
scale for a dilutionp = 0.75. The straight line is the power law fit reported in table 2 and text.
This fit has aχ2/DF = 0.28.

scaling in figures 3 and 4, forp = 0.889 andp = 0.75 respectively, with our best power
fits, using equation (2), drawn as a line (fifth column of table 2). We report the numerical
values of the fit (also for the susceptibility) in table 2. The second and third columns of
table 2, are the estimates of [8] forγ /ν andη, obtained as 2− γ /ν.
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Table 2. Results for the critical exponents.

p γ/ν η γ /ν 1/ν η

0.889 1.72(1) 0.279(14) 1.75(2) 1.873(13) 0.254(26)
0.75 1.72(3) 0.28(3) 1.76(3) 1.89(2) 0.22(4)

The first column is the proportion of spins. The next two columns are the critical exponents
reported in [8]. The fourth and fifth columns are our estimates ofγ /ν (as control, calculated as
χmax ≈ Lγ/ν ) and1/ν (using the scaling of the zeroes, equation (2)) respectively. In the last
column we reportη calculated using the scaling relation, in two dimensions,η ≡ 4 − 21/ν.

Table 2 shows that our values ofγ /ν are in the errors with those of [8] (we perform this
as check) and this also holds with our estimate ofη using scaling of zeroes, equation (2).
The results are compatibles withη = 0.25 on the critical line.

6. Conclusions

We have investigated the Griffiths phase by studying the behaviour of the probability
distribution of the smallest Yang–Lee zeroes. We have obtained a clear numerical picture
of the finite-size construction of these singularities. We have also confronted our numerical
data with previous analytical results [4] and the agreement is very good.

In the second part of this paper we have shown that the study of the smallest zeroes is
very useful to estimate accurately the anomalous dimension of the system.

We have extracted one critical exponent of the system,η, which agrees with the
analytical predictions and with the numerical results. We need to calculate the second
one in order to fix the universality class of the Hamiltonian. A possible calculation, in the
line to seek complex singularities, is the study of the Fisher zeroes [18]. This study will
point out the thermal critical exponentν [20] and clarify if it depends on the proportion of
spins or not.
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